The effects of local application of retinoic acid on limb development and regeneration in tadpoles of Xenopus laevis.

نویسندگان

  • S R Scadding
  • M Maden
چکیده

Vitamin A can have different effects on developing and regenerating limbs depending on the mode of administration. Previous work has demonstrated the differential effect of retinol palmitate on limb development and regeneration in Xenopus laevis. The purpose of the present investigation was to determine the effects of vitamin A on limb development and regeneration in Xenopus when administered by a local implantation method. Xenopus tadpoles had both hindlimbs implanted with either a block of silastin carrying retinoic acid or an anion exchange resin bead carrying retinoic acid and then the right hindlimb was amputated and the effect of the retinoic acid on limb development and regeneration was studied. The results showed that in developing hindlimbs the effects of silastin implants carrying retinoic acid was to cause skeletal reductions or deletions similar to those induced by immersion of the tadpole in retinol palmitate. On the other hand, in regenerating hindlimbs, the silastin implants caused a range of skeletal reductions and deletions as well as occasional accessory structures but notably induced no proximodistal (PD) duplications, unlike the effect of immersion in retinol palmitate where PD duplications were a common response. Implantation of anion exchange resin beads carrying retinoic acid had no significant effect on either development or regeneration beyond stage 50, presumably because the dose of the retinoic acid was so low. Thus the results suggest that the mode of administration of vitamin A has a very significant influence on its effects. The significance of this observation for vitamin A experiments on limbs is discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of local application of retinoic acid on limb development and regeneration in tadpoles of Xenopus

Vitamin A can have different effects on developing and regenerating limbs depending on the mode of administration. Previous work has demonstrated the differential effect of retinol palmitate on limb development and regeneration in Xenopus laevis. The purpose of the present investigation was to determine the effects of vitamin A on limb development and regeneration in Xenopus when administered b...

متن کامل

Comparison of the effects of vitamin A on limb development and regeneration in Xenopus laevis tadpoles.

The purpose of these experiments was to compare the effects of vitamin A on developing and regenerating limbs in Xenopus laevis tadpoles. Each tadpole had one hindlimb amputated to induce regeneration while the contralateral developing limb was left intact. Tadpoles at stages 50 through 54 were treated by immersion in retinol palmitate at doses ranging from 0.3 to 75 i.u. ml-1, for periods rang...

متن کامل

Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles

Bone morphogenetic protein (BMP) signalling is necessary for both the development of the tail bud and for tail regeneration in Xenopus laevis tadpoles. Using a stable transgenic line in which expression of the soluble BMP inhibitor noggin is under the control of the temperature inducible hsp70 promoter, we have investigated the timing of the requirement for BMP signalling during tail regenerati...

متن کامل

اثرات مورفوژنیک و تراتوژنیک اسید رتینوئیک در جنین جوجه

ABSTRACT: Retinoic acid "one of the derivatives of vitamin A "has different morphogenic and teratogenic effects on developing organs. For this reason, the present study is an attempt to examine the effects of retinoic acid on limb bud ,eye and body axis of chick embryo in the stages of 11-12 Humburger and Hamilton. The experiments cartied out in this study was based on 140 white eggs which h...

متن کامل

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of embryology and experimental morphology

دوره 91  شماره 

صفحات  -

تاریخ انتشار 1986